If it's not what You are looking for type in the equation solver your own equation and let us solve it.
960=256t+16t^2
We move all terms to the left:
960-(256t+16t^2)=0
We get rid of parentheses
-16t^2-256t+960=0
a = -16; b = -256; c = +960;
Δ = b2-4ac
Δ = -2562-4·(-16)·960
Δ = 126976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{126976}=\sqrt{4096*31}=\sqrt{4096}*\sqrt{31}=64\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-64\sqrt{31}}{2*-16}=\frac{256-64\sqrt{31}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+64\sqrt{31}}{2*-16}=\frac{256+64\sqrt{31}}{-32} $
| 60=t(16+t) | | X-8=3x-9-2 | | 1/2(12-4s^2)-2s(1-s)=8 | | 5(x+8)=13x | | x/0.25=22/0.8 | | -14=v+8 | | -6x+4=(-x-3) | | -4x-28=96 | | 10x+72=210 | | 4y+6=5y+6 | | r+4/r-2=1/4 | | -4(1x-5)=12 | | 2(4x-9)=62 | | 2.3^x=0.3^-x | | 7(-6x+3)=-105 | | 2x-5(x-6)=34+5x | | 7x-4+5x=8x+8 | | -7=4x-5x+4 | | 3/8t-2/3=-11/3 | | 7x-26=9 | | X+8+3x=56 | | 15-4x-1=5x-2x | | 3+5x+3x=-53 | | 4(x-2)-19=-51 | | -4x+3+6x=-5 | | 2.2x2-7x+3=0 | | 2h+5=41 | | 0=6x2-13x-5 | | -6(x+3)-3=-15 | | 0=5x^2+7x+3 | | 9m-9=2m+7 | | x+2(x+1)=11+2(x+2) |